

Welcome to the documentation for DOE NF

Overview and Quickstart

	Project Overview

	Reference Function and Dependencies

	Experiment Quickstart

Experiment Script Documentation

	Experiment Overview

	Topology Reservation

	Experiment Execution

	Data Analysis and Chart Creation

Project Overview

The DOE Network Function (NF) Project is designed to provide functionality to Industrial Control System (ICS) operators
to allow them to set per-flow policy between endpoints. Primarily this is intended to provide additional security
and behavior stability over insecure and unreliable commodity transport, but the NF can be leveraged for a wide range
of needs as they evolve over time. By using a network function to provide additional functionality the lifecycles of
network resilience needs and industrial hardware are decoupled, allowing long-life ICS hardware to continue to operate
in a fast evolving network environment.

The Network Function insertion in the topology is generally as seen below:

[image: ../_images/topo-overview.png]
While this trivial example shows paired NFs being used to provide secure and reliable delivery over commodity transport,
it can also be deployed to enforce flow policy within an administrative domain - for example, between the typical
enterprise network and the industrial controls at the same site.

Reference Function and Dependencies

The reference Network Function here is not intended to be performant, but rather a proof of concept for evaluating
basic behavior in the face of differing network conditions and flow inputs. The ultimate output of the project
is a specification that we expect ICS vendors will use to implement the functionality in their own products.

The reference NF, test orchestration framework, and analysis tools are written in Python. Below we list both the
software and other requirements for utilizing these tools.

Test Topology Builder (reserve.py)

To build the test topology using the reserve.py script you will need a valid GENI credential in order to use
the VTS testbed employed. If you do not have GENI credentials you can find instructions for acquiring
credentials at the NSF GENI Portal [https://portalgeni.net].

Your environment will require the installation of the following python libraries:

	geni-lib [https://geni-lib.readthedocs.io] (properly configured with your GENI credentials)

Note

The default Vagrant installation of geni-lib builds a 32-bit virtual machine whose base OS has conflicts
with the libraries required for operation of this experiment. You can use virtualenv to build an
isolated environment on that VM to separate your use of this code from the base OS.

	uhgeni [https://bitbucket.org/uh-netlab/uhgeni]

	requests [http://docs.python-requests.org/en/master/]

	lxml [http://lxml.de/]

	ipaddress [https://pypi.python.org/pypi/ipaddress]

	cryptography [https://cryptography.io/en/latest/]

The topology builder will function with the libraries above, although it sets up an environment that will
require that you link a Dropbox [https://dropbox.com] account with the VTS site you use, in order to automatically
transfer the experiment data out of the isolated topology that VTS creates. You can easily do this using the
documentation here [http://geni-vts.readthedocs.io/en/latest/howtos/dropboxassoc.html].

Experiment Runner (runexp.py)

The experiment orchestration system does not require that you use a topology in the GENI environment, but the
experiment runner script provided here has weak dependencies on that topology. If you have an interest in setting
up the experiment topology on other resources and still using the runexp.py script in your environment, please
contact UH Netlab and we can assist you.

The experiment runner script requires the following python libraries be installed:

	uhexp [https://bitbucket.org/uh-netlab/uhexp]

	paramiko [http://www.paramiko.org/]

Output Analysis (nflogalyze.py)

The analysis script requires the following python libraries to be installed:

	matplotlib [https://matplotlib.org]

Documentation

This documentation can be rebuilt out of the primary repository [https://bitbucket.org/uh-netlab/doe-nf].

Should you choose to do so you will need the following python libraries and tools:

	sphinx [http://www.sphinx-doc.org/en/stable/]

	sphinx-rtd-theme [https://pypi.python.org/pypi/sphinx_rtd_theme]

If you choose to produce PDF documentation you may also need latex packages for your system.

Experiment Quickstart

There is detailed documentation of all of the options available for each script available later this this
documentation. This section is a quick example of how to run the basic experiment with minimal non-default
parameters (and limited explanation).

Install Tools

You will need to install a number of python libraries - if you are not using a virtualenv you may have to use
sudo with pip:

$ pip install --upgrade requests lxml cryptography ipaddress paramiko matplotlib

You will need a working geni-lib installation set up with your GENI credentials. You can find installation
instructions in the online geni-lib documentation [http://geni-lib.readthedocs.io/en/latest/index.html].

You will also need to clone and install a pair of libraries provided by the UH NetLab:

$ hg clone https://bitbucket.org/uh-netlab/uhgeni
$ hg clone https://bitbucket.org/uh-netlab/uhexp

$ cd uhgeni; pip install .; cd ..
$ cd uhexp; pip install .; cd ..

Finally, we will clone the repository containing the tools to build the experiments:

$ hg clone https://bitbucket.org/uh-netlab/doe-nf
$ cd doe-nf

Run Experiment

In order to run the experiment you need to choose a VTS site to use with scripts/reserve.py - we’ll use
the site located at GPO for this example, but you can choose any publicly-available VTS site. Once you
have chosen a site you will need to link a Dropbox account with your user credential at that site, in order
to transfer data for analysis out of your isolated topology, as VTS topologies do not have access to the internet.
You can find instructions for this in the online GENI VTS documentation [http://geni-vts.readthedocs.io/en/latest/howtos/dropboxassoc.html].
The experiment will still function without this feature, but you will not be able to easily retrieve data for analysis.

When you are ready to execute the experiment, you will make a reservation and then use the reserved topology details
to invoke the experiment orchestration script (replace myslicename with a slice you have created):

$ scripts/reserve.py --delete --slice myslicename --site vts-gpo --num-sites 2 --num-sensors 2 --with-nf --mgmt-delay 1000 --mgmt-reorder 20

This will create a topology with two sensor sites that have two sensors each, 1000ms of delay (typical of
geosynchronous satellite transport), 20% packet reordering, and employ the NF in the topology. It
will also delete any previously existing sliver at this site if one exists. Once this returns it will have saved
the manifest, request rspec, and dot file representing your reservation in the current directory. You can now
run the actual experiment:

$ scripts/runexp.py --sites 2 --sensors 2 --sensor-rate 25 --run-time 30

You will be asked for the passphrase for any SSH private keys needed to execute the experiment. After setting up
all the nodes in the topology this will run the sensors for 30 seconds and then shut everything down. You can view
the current progress by tailing the live output log in another terminal:

$ tail -F doe-exp.log

Generate Charts

If you have enabled Dropbox syncing with the VTS site, your runtime data will appear in your dropbox in
Apps/vts-gpo/<sliver-uuid> as the experiment run ends.

If your Dropbox folder is not accessible from the place where you installed the analysis tools, you will need
to copy nf2/nf2/_host_root/nf-eth1-eth2.log to an accessible location. You can generate a standard set of
charts using the following command:

$ scripts/nflogalyze.py --logs /path/to/nf-eth1-eth2.log

By default this will generate charts in PNG format in the current directory.

Note

Your system may need to have tk installed and the instructions vary per OS and distribution. On Ubuntu
you can typically execute sudo apt-get install python-tk and it will install the system libraries you need.

Experiment Overview

The topology creator (reserve.py) and experiment runner (runexp.py) in this repository create a topology
and run a limited experiment on it. The root repositories for this project will contain more advanced experiments
over time. This limited experiment evaluates the effect of packet reordering on packet delivery time, and also
resource usage in the network function (queue depth, and thus memory usage).

The reserve.py script creates a single remote management endpoint and an arbitrary number of remote sites
with a configured number of sensors for those sites. Packets between these sites traverse a commodity transport
that is unreliable and that unreliability is configurable (latency and reordering). The basic topology
configuration is as shown below:

[image: ../_images/variant-topology.png]
You can configure the number of packets-per-second (pps) sent by each sensor, the number of sites and sensors,
the latency in the network, and the reordering applied to those packets. The default GENI VTS reordering is applied
using netem, which sends packets before their typical delay, so that delay is broken up across the network to
make the mean delivery time still match your requested latency while offering reordering.

Note

The reordering applied delay is by default 10% of the overall requested delay, which means that the interarrival
time from the sensors must be less than the delay in order to cause reodering in the same flow (e.g. if 10% of your
delay is 100ms and you send packets twice a second, reordering within the same flow will not occur).

Topology Reservation

reserve.py takes a number of arguments, most of which are optional.

	--site

	Site to deploy topology, as a site name (vts-gpo, etc.)

	--slice

	Slice name

	--project

	Project name (typically the geni-lib default)

	--with-nf

	Build with network function – don’t set to get baseline

	--context-path

	Path to context JSON, if not default location

	--delete

	Delete any pre-existing sliver with same slice name

	--num-sites

	Number of sites to deploy in topology

	--num-sensors

	Number of sensors to deploy per site

	--mgmt-loss

	Percentage of loss in network

	--mgmt-delay

	Delay in ms between every site and mgmt location

	--mgmt-reorder

	Percent of packets to reorder

	--config-path

	SSH Config file location for constructed topology

	--uhexp-url

	URL for uhexp repository

	--uhexp-branch

	Branch in supplied repository

	--nf-url

	URL for doe-nf repository

	--nf-branch

	Branch in supplied repository

	--nfbase-url

	URL for pynf-base repository

	--nfbase-branch

	Branch in supplied repository

Only slice is a required argument if you have a properly set up geni-lib context. You can
use the URLs and branches to supply your own modification to the experiment. The default values
of num-sites is 2 and num-sensors is 3, which you will need to know to provide input to
runexp.py. You will have to set reorder and delay parameters in order to get useful results,
but they are not required for basic packet delivery to function.

The common execution of reserve.py for an NF deployment will simply be:

$ reserve.py --with-nf --mgmt-delay 1000 --mgmt-reorder 20 --slice slicename

Experiment Execution

runexp.py takes a small number of arguments, with some required based on the values passed to
reserve.py.

	--sites

	Number of sites in the topology

	--sensors

	Number of sensors per site

	--sensor-rate

	Number of packets per second sent by each sensor

	--debug

	Enable debug logging

	--setup-only

	Only setup experiment, without running

	--run-time

	Duration to run sensors and NF in experiment

runexp.py must be passed information about the topology, as it cannot determine the values
without assistance. A typical run of the experiment for 30 seconds would be:

$ runexp.py --sites 2 --sensors 3 --run-time 30

Data Analysis and Chart Creation

The experiment orchestrator by default creates a robust amount of validation data (if you use --debug more
data will be saved that are not typically useful unless you are experiencing runtime issues). pcap files are
stored for each interface on each Network Function (NF), and the NF itself writes a log recording packet actions
(stored in _host_root/nf-eth[x]-eth[y].log for each NF host). The NF log is used for primary evaluation
and chart generation, while the pcap files are typically used for manual validation of unusual results.

nflogalyze.py parses the NF log and generates charts for either a single run, or panels for a set of runs.
You can control the output with the following options:

	--logs

	List of logfiles for which to provide charts

	--panels

	Whether to generate panels for multiple log inputs

	--num-rows

	Number of rows to use for the panel charts

	--num-cols

	Number of columns to use for the panel charts

	--type

	Image file type

Typical operation for generating charts for one experiment run would be:

$ nflogalyze.py --logs nf-eth1-eth2.log

For multiple runs the number of rows and columns need to multiply to the total number of logs provided for the
constituent runs. For 10 runs you could use the following command:

$ nflogalyze.py --logs *.log --panels --num-rows 2 --num-cols 5

The logs must be named in the form [*]XX.log where XX is the reorder percentage in order to get sensible
chart titles.

Index

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/up.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to the documentation for DOE NF

 		
 Project Overview

 		
 Reference Function and Dependencies

 		
 Test Topology Builder (reserve.py)

 		
 Experiment Runner (runexp.py)

 		
 Output Analysis (nflogalyze.py)

 		
 Documentation

 		
 Experiment Quickstart

 		
 Install Tools

 		
 Run Experiment

 		
 Generate Charts

 		
 Experiment Overview

 		
 Topology Reservation

 		
 Experiment Execution

 		
 Data Analysis and Chart Creation

_images/variant-topology.png
Sensor Sites

Commodity Transport

Management Site

_static/ajax-loader.gif

_images/topo-overview.png
Site A

Local Console

Local Console

Central Management / Monitoring

Remote Console

Commodity
Transport

Site B
coee ()

